Approximation on the sphere using radial basis functions plus polynomials
نویسندگان
چکیده
منابع مشابه
Approximation on the sphere using radial basis functions plus polynomials
Abstract. In this paper we analyse a hybrid approximation of functions on the sphere S ⊂ R by radial basis functions combined with polynomials, with the radial basis functions assumed to be generated by a (strictly) positive definite kernel. The approximation is determined by interpolation at scattered data points, supplemented by side conditions on the coefficients to ensure a square linear sy...
متن کاملData compression on the sphere using multiscale radial basis functions
We propose two new approaches for efficiently compressing unstructured data defined on the unit sphere. Both approaches are based upon a meshfree multiscale representation of functions on the unit sphere. This multiscale representation employs compactly supported radial basis functions of different scales. The first approach is based on a simple thresholding strategy after the multiscale repres...
متن کاملTransport schemes on a sphere using radial basis functions
The aim of this work is to introduce the physics community to the high performance of radial basis functions (RBFs) compared to other spectral methods for modeling transport (pure advection) and to provide the first known application of the RBF methodology to hyperbolic partial differential equations on a sphere. First, it is shown that even when the advective operator is posed in spherical coo...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملGeophysical Modeling on the Sphere with Radial Basis Functions
Modeling data on the sphere is fundamental to many problems in the geosciences. Classical approaches to these problems are based on expansions of spherical harmonics and/or approximations on latitude/longitude based grids. The former are quite algorithmically complex, while the latter suffer from the notorious pole problem. Additionally, neither of the methods can be easily generalized to other...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Computational Mathematics
سال: 2007
ISSN: 1019-7168,1572-9044
DOI: 10.1007/s10444-007-9048-1